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Kinematic and dynamic conditions for the existence, or otherwise, of viscous eddies 
due to point, ring or a line distribution of stokeslets near no-slip boundaries are 
investigated. Boundaries considered are (i) a single plane boundary, (ii) two parallel 
plane boundaries, (iii) an infinite cylinder, and (iv) a finite cylinder. It is found that the 
following constraints on the fluid lead to the existence of eddies (i) a zero flux condition, 
(ii) confinement due to boundaries, (iii) streamline convergence near the singularity, 
and (iv) the interaction of flow fields due to adjacent stokeslets. The existence or 
.non-existence of various viscous eddies is illustrated and discussed in detail for the 
case of infinite line distributions of stokeslets (i.e. a two-dimensional stokeslet). The 
paper suggests that flow fields produced by sessile micro-organisms are determined 
primarily by the container geometry in which they are located. 

1. Introduction 
Recent theoretical studies on flows at  low Reynolds number in bounded geometries 

have revealed the existence of viscous eddies of varying shapes and sizes. Moffatt 
(1964), Liron & Mochon (1976), Davis & O’Neill (1977), Yo0 & Joseph (1978), Liu & 
Joseph (1978) and Blake (1979) have predicted the existence of from one to infinit,ely 
many viscous eddies. Except for the works of Liron & Mochon and Blake, these flow 
fields are produced by some exterior pressure or primary flow field. In all of these 
studies no attempt was made to isolate the important mechanisms that determine the 
existence of viscous eddies. Recently Jeffrey & Sherwood (1980) have surveyed the 
different streamline patterns and eddies that can exist in two-dimensional Stokes 
flows. They present streamline patterns near stagnation points, and later concentrate 
their discussion on eddies in corner-like regions. They suggest that the eddies one 
calculates are a result of two competing components. One is the result of the primary 
outside flow field stirring the flow, and the other is the modification caused by the 
local special conditions. In this paper we investigate the basic dynamic and kinematic 
conditions that determine the size and number of viscous eddies that are produced 
next to simple geometries. To this end we investigate the formation of (mainly three- 
dimensional) eddies in different geometries relative to the direction of a point force, 
or a line distribution of point forces. The reason for choosing point forces to study 
viscous eddy formation is twofold. Firstly, it enables us to study in isolation the 
conditions determining the size and number of eddies without additional effects of 
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external fields. Secondly, such eddies have been observed experimentally in research 
on sessile micro-organisms with actively beating cilia (or flagella) where the action of 
the cilia can be represented as a distribution of force singularities. 

In a detailed experimental study of the food collection by VorticeEla, Sleigh & Barlow 
(1976) not only considered the flow fields around the peristome and infundibulum, but 
also recorded details of the fluid motion in the far field well away from the body. The 
particle path lines they observed were almost circular in planes parallel to the slide 
and coverslip, suggesting that the flow field produced by Vorticella has similar stream- 
lines to that prohced by a, two-dimensional protential source doublet. Actually the 
microscope slide and coverslip are acting like a Hele Shaw cell (see, for example, 
Batchelor 1967) with the organism providing the source of momentum. In this case 
the far field is precisely a two-dimensional potential source doublet with parabolic 
variation in the strength of the flow field between the plates (Liron & Mochon 1976). 

Depending on the size of the organism relative to the size of the container, we can 
consider the organism as a force concentrated at  a point or distributed along a line. 
This paper will suggest that the flow fields produced by sessile organisms, and in 
particular the various observed eddies or vortices, are determined primarily by the 
container geometry in which they are located and not some peculiar property of the 
organisms’ propulsive apparatus. 

We discuss here the importance of the following factors in determining the size and 
the number of eddies; 

(i) the zero flux condition; 
(ii) confinement due to boundaries in determining the number and shape of eddies; 
(iii) the effect of streamline convergence near the force singularities; 
(iv) interaction of flow fields from adjacent eddies. 

This will be done by considering a series of examples. 
In $ 2  we consider flow fields due to a single stokeslet in various geometries; from a 

stokeslet parallel to a plane boundary, for which no eddy exists, through to examples 
such as a stokeslet in an infinite cylinder for which an infinite number of eddies are 
found to exist. The importance of the zero flux condition and boundary confinement 
is demonstrated and discussed in detail. In line with the experimental study of Sleigh 
& Barlow (1976), we consider, in $3, eddy patterns due to a circular distribution of 
force singularities next to a plane boundary, or between a slide and a coverslip (two 
parallel plane boundaries). Additional eddies which cannot be explained by the 
factors (i) and (ii) above are seen. These additional eddies are due to the interaction 
of the stokeslets. Because of the complicated expressions for the Stokes stream func- 
tion in these cases, isolating the interaction mechanisms is not straightforward. 
However, it is much easier to consider the case of two adjacent infinite lines of uni- 
formly distributed stokeslets (two stokeslets in two dimensions) next to a plane 
boundary which produces qualitatively similar flow fields. This is shown in $ 4  and is 
used to explain the existence (or non-existence) and location of the additional eddies, 
depending on distance between the two lines. All four factors above are now important 
in determining the eddy structure. A summary of the results and a discussion of the 
importance of the various factors determining viscous eddy formation is given in the 
last section, $ 5.  
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2. Single stokeslet 
An explanation of the existence or otherwise of one or more eddies (infinitely many 

in some cases) due to the action of a single stokeslet, representing a concentrated 
directional source of momentum, is presented in this section for a number of specific 
examples. 

(a) Plane boundary 

(i) Parallel w e .  For a stokeslet parallel to  a plane boundary no eddy exists. This may 
be readily seen if one looks at the far-field solution. Consider a stokeslet of unit strength 
acting at  the point (0, 0, k) in the x direction in an (x, y, z )  Cartesian co-ordinate system 
and with the plane boundary located a t  z = 0, then the three components of velocity 
are given by (Blake 1971) 

ui - - 12hxzri+O(-$,), i = 1,2,3,  
87rpr5 

It immediately follows that the velocity in the x direction is always positive. It should 
be noted that the flux Q created by the above stokeslet in the x direction is proportional 
to h (Liron 1978). Thus, the boundary, although reducing the flux to a finite value 
compared to the infinite flux created by a stokeslet in an infinite medium (Liron 1978) 
is still not sufficient to completely retard the flow and create a vortex or eddy. 

(ii) Normal m e .  For a stokeslet located as before but directed normal to the plane 
boundary, we have axisymmetric flow so we can introduce a Stokes stream function 
$(r,z) ,  where r and z are the radial and axial co-ordinates in cylindrical polar co- 
ordinates. The stream function is given by Aderogba t Blake (1978). As the flux must 
be zero in the direction of the force because of the zero (normal) velocity condition on 
the plane boundary and since there is a positive flow in the normal direction near the 
stokeslet, there must be a counter-flow further away thus creating an eddy similar to 
the eddy illustrated later in figure 2 (a) .  Only one toroidal eddy exists, extending to 
infinity both in the radial and axial directions. 

(b )  Two-dimensional stokeslet near a plane boundary 

The two-dimensional case can be obtained from the three-dimensional solution for a 
stokeslet by considering an infinite line distribution of three-dimensional stokeslets 
of uniform strength and direction. The situation here is similar to the previous case 
with no eddy for a stokeslet parallel to the boundary and two symmetric eddies 
extending to infinity (instead of one toroidal eddy) for a stokeslet normal to the plane 
boundary. 

Consider a two-dimensional stokeslet of strength 47rp located at (0 , l )  (linear dimen- 
sions are non-dimensional with respect to the height h of the stokeslet) in an ( x , z )  
Cartesian co-ordinate system and with the plane boundary at  z = 0. Define a stream 
function $(x, z )  with velocities in the x and z directions given respectively by 
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FIGURE 1. Streamlines for a two-dimensional stokeslet above an infinite no-slip plane. (a) 
Stokeslet pointing parallel to the plane boundary, see (2.4). On the circle z* +za = 1 the stream- 
lines are parallel to the plane boundary, z = 0. For the dashed line see §a@). ( b )  Stokeslet 
pointing normal to the plane boundary, see (2.5). Two symmetric infinite eddies now exist. 
For the dashed line see §4(a). 

For the stokeslet parallel to the boundary, pointing in the x direction, we obtain 

For the stokeslet normal to the boundary, pointing in the z direction, we obtain 

The flux in the x direction due to the parallel stokeslet is 

Q = P.(%.O) = 4, 
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FIQVRE 2. The firat axisymmetric toroidal (kite)  eddy streamlines due to a stokeslet normal to 
two infinite parallel plane boundaries. (a) h / H  = 0.2, (b)  h / H  = 0-5. 

and the flux in the z direction due to the normal stokeslet is obviously zero. Stream- 
lines for the parallel stokeslet are given in figure 1 (a) and for the normal case in figure 
1 ( b ) .  These will be used further in $ 4  to help to explain stokeslet interactions. 

( c )  Parallel to, and in between, two plane boundaries 

The solution for a stokeslet between two parallel plane boundaries is given by Liron & 
Mochon (1976). Although the near field is complicated, the far field rapidly approaches 
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that of a two-dimensional source doublet in planes parallel to the boundaries 
with the strength depending parabolically on the distance between the two boundaries. 
The flux in the direction of the stokeslet is zero (Liron 1978). We thus obtain two circu- 
lar eddies touching a t  the origin and extending to infinity, both in the direction of the 
force and perpendicular to it in planes parallel to the boundaries. Visually, the 
streamlines appear circular, but particles a t  different levels would move at different 
speeds. This is the behaviour one would expect in a Hele Shaw cell. 

( d )  A stokeslet normal to two plane boundaries 
In  this example the flow field will be axisymmetric about the point force so we can 
use the Stokes stream function $(r, z), with radial and axial velocities given respec- 
tively by 

For a stokeslet of unit strength located at r = 0, z = h the stream function can be 
obtained by equating the stream-function expression (2.7) for the velocities with 
equations (47, 48) in Liron & Mochon (1976). 

In figure 2 (a, b), graphs of the resulting streamlines are shown for two values of 
h/H,  where H is the distance separating the two plane boundaries. The streamline 
patterns vary from those approaching the half-space eddies in figure 2 (a) ,  through to 
the symmetric eddy illustrated in figure 2 (b). From the results of a single boundary 
we would expect to have a toroidal eddy adjacent to the stokeslet. However, it  is 
substantially different from the last case (c) in that the exis of eddy rotation is in the 
azimuthal direction (i.e. parallel to the two boundaries), whereas in the previous case 
the axis of rotation was normal to the two plates. The existence of only one eddy would 
imply that it extended to infinity in the radial direction though confined between 
the plates in the z direction. There is no such solution to the Stokes flow equations 
a t  infinity for radial flow which satisfies the no-slip and zero flux conditions, and so it 
breaks up into an infinite set of eddies with adjacent eddies rotating in the opposite 
sense, just like the eddies obtained by Moffatt (1964). Solutions of the Stokes flow 
equations are those exhibiting the least energy dissipation and this is the mechanism 
used in this case. The eddies become much weaker with distance, decaying exponen- 
tially with r .  It can be shown that 

$(r ,z)  N A(z,h,H)riexp( -4.212r/H)cos(2.25lr/H+6) (2.8) 

as r + CQ, where A is an amplitude independent of r ,  and 6 is a phase, also r independ- 
ent. We thus obtain that the strength of the eddies decay exponentially with r with 
a wavelength for the eddy structure of 

A N - -  nH - 1.3968. 
2.251 

A similar situation occurs in the following example. 

( e )  Stokeslet in an infinite cylinder 
The solution for this problem was given by Liron (1978) for arbitrary position and 
orientation and by Blake ( 1979) for a stokeslet on the axis as well as higher singularities 
such as a Stokes doublet and a potential source doublet. As in the above case, these 
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recent studies show the existence of an infinite set of toroidal eddies along the axis of 
symmetry with a wavelength h M 2*15a, where a is the cylinder radius. The axis of 
eddy rotation is in the azimuthal direction (i.e. perpendicular to any plane section 
through the cylinder axis). Thus, again, the eddies cannot expand in the radial direc- 
tion and consequently break up into an infinite set of exponentially decaying toroidal 
eddies. 

(f) Stokeslet within a jinite cylinder 
The introduction of additional boundaries closing the cylinder introduces an additional 
containment on the fluid. These additional boundaries restrict the number of eddies 
that can be formed as well as possible changes in shape. Let the height of the cylinder 
be H ,  its radius a, and with the stokeslet located on the axis a t  height h. Blake (1979) 
has shown the many types of eddies that may exist in such an arrangement. The 
number, location and shape of the eddies depends on the relative magnitudes of h / H  
and a / H .  If a/H B 1 (approaching the case (d )  of two flat plates) then we should obtain 
a set of eddies in the radial direction, similar to case (d), but terminating because of 
the existence of the outer cylindrical boundary. Likewise, if a/H 4 1 and h / H  = O( 1) 
the flow would approach case ( e )  with just a finite number of eddies; the number 
depending on a / H  and the characteristic wavelength given in case ( e ) .  In  addition, 
near the junction between the cylindrical boundary and the plane boundaries, corner 
eddies (Moffatt type) will exist, although these are very much smaller than the interior 
eddies of specific interest to us. Details of this as well as theory and techniques for 
deriving the expressions for the Stokes stream function in the cylindrical container 
may be found in Blake (1979) together with illustrations of the shape of the eddies 
formed. 

In  summary, the existence of a non-zero flux in the x direction for a force acting 
parallel to a single plane boundary is disturbing on physical grounds. From momentum 
considerations the zero flux condition is the obvious constraint as one would not 
expect a finite force to be capable of moving an infinite volume of fluid. Indeed this 
may lead to an apparent paradox. For a stokeslet parallel to a plane boundary the 
flux is non-zero ($$2a, 2b), but becomes identically zero if an additional parallel plane 
boundary is placed above the stokeslet; this result being independent of the gap 
between the boundaries ( $ 2 ~ ) .  Of course, where we only have algebraic decay of the 
velocity, we are usually left with the non-validity of the Stokes flow equations in the 
far field. Thus, in general, we can only consider these results as being valid in the 
near field. Exponential decay of the velocities appears to yield a uniformly valid 
approximation through the entire fluid domain. For example, in the case of a stokeslet 
normal to two plane boundaries ( $ 2 4  the velocity decays exponentially to zero by 
creating an infinite sequence of eddies. As the top plate is displaced to infinity, the 
primary eddy (adjacent to the stokeslet) expands to fill the entire volume, as can be 
deduced from (2.9). The solution blends uniformly into that for a stokeslet normal to 
one plane boundary, which exhibits one infinite three-dimensional toroidal eddy. 
Here the zero-flux condition holds throughout. For problems which already satisfy 
the zero-flux condition via exponential decay of velocities, it is seen that the introduc- 
tion of additional peripheral boundaries, such as closing the cylinder ($  2f), does not 
drastically change the flow field, except locally, adjacent to the added boundaries in 
which corner eddies (Moffatt type) may be introduced and the shape of adjacent 
eddies distorted. 
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FIQURE 3. Configuration of uniform ring distribution of stokeslets oriented normal to two 
infinite parallel plane boundaries, and oriented radially, parallel to the boundaries, see 0 3. 
For half-space (93a, b)  we take H = a. 

3. Ring distribution of stokeslets 
In this section we look a t  a ring distribution of stokeslets near a single and two 

parallel plane boundaries. This would be appropriate when using surface distributions 
over an axisymmetric body because in this case a ring distribution of stokeslets would 
be needed. Another example is the previously cited sessile micro-organism Vorticella 
which has a ring of cilia drawing in fluid towards its infundibulum : the cilia in this case 
are acting as a ring distribution of stokeslets. In separate parts in this section we con- 
sider the single plane and the parallel planes examples for the force distribution 
directed in both the normal and tangential directions. 

(a) Single plane boundary, normal orientation 

For a ring distribution of radius a and height h above the plane boundary (see figure 
3) an expression can be readily obtained by integrating the radial velocities through 
277 and then using (2.7),  with x replacing z, to obtain the following expression, 

(Z - h)’ ( x +  h ) 2 K ( K )  K(k)  - R,E(K)  +- 
R2 

where 
rt = ( x - h ) 2 + ( r - a ) 2 ,  ri = (x-h)2+(T+u)2, 
Bf = ( x + h ) 2 + ( r - a ) 2 ,  Ri = ( z+h)2+(r+a)2 ,  

Here K and E are the complete elliptic integrals of the first and second kind respec- 
tively (see Abramowitz & Stegun 1965). Streamline patterns are very similar to those 
of 5 4, figure 5 (u-c). Of particular interest is the opposing finite eddy which lies near 
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FIQURE 4. Axisymmetric streamlines due to a uniforni ring distribution of stokeslets between 
two infinite parallel plane boundaries, a distance H apart. Ring is at height h and of radius a. 
(a)  Vertical orientation h / H  = 0.5, a / H  = 0.2, no internal eddy. (b )  Radial orientation, 
h/H = 0-5, a / H  = 0.2. No internal eddy exiets, see (A 3) in the appendix. In both cases an 
infinite sequence of 'external' toroidal eddies exist, but only the firat is shown. 
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FIGURE 5. Streamlines for a symmetric pair of two-dimensional stokeslets a distance 2a apart 
above a plane boundary. Only the right half-plane is shown. (a)-(c) Vertical orientation, a= 0.5, 
a = 1.0, a = 2-0 respectively (see (4.1)), showing results similar to a vertical ring distribution. 
Internal eddy exists for a > 1/43, see (4.). (d)-(f) Tangential orientation (the stokeslet at  (-a, 1) 
pointing in the negative y direction), a = 0.5, 1.0, 1.5 respectively, see (4.2), showing results 
similar to a radial ring distribution, $3. The internal eddy attaches to the boundary alone a of 
a = 1.0,see(4.8). 
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FIGURE 5 (c, d ) .  For the caption see page 126. 
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FIUURE 5 (e, f). For the caption see page 126. 
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the axis of symmetry adjacent to the rigid boundary that develops when the radius 
is above a critical value. In  the far field the streamlines approach that for the point 
force example. In the next section a physical explanation of the development of the 
additional eddies will be given. 

(b) Single plane boundary, radial orientation 

In  this case no relatively simple expression, as in (3. l),  can be easily obtained. However, 
it  is very easy to numerically integrate the following expression to obtain the stream 
function as a function of position: 

where 
r2 = (x - h)2 + r2 +aa - 2ar7, R2 = (x + h)2 + r2 + a2 - 2ar7. (3.4) 

Again h is the height of the ring distribution above the plane boundary and a is 
its radius. Streamline patterns are similar to those in figure 5(d- f ) .  An additional 
eddy always exists. For values of the radius below a critical value, the eddy appears 
near the axis, but for larger values of radius, a, it is ‘trapped’ adjacent to the boundary. 
This too will be explained in Q 4. 

( c )  Two plane parallel boundaries, normal orientation 

In  this case we have three important length scales, the ‘gap’ H between the slide and 
coverslip, h, the height the distribution is located above the slide, and a, the radius of 
the ring distribution. The geometry relevant to this problem is shown in figure 3. 
Obviously as we vary these dimensions the flow fields will change substantially. For 
example, when h is much less than H, we shall reproduce the results of the half-space 
fluid above, and if a is much less than both h and H the flow field will approximate the 
point force solution. Of course in the far field the streamline patterns approach that 
for a point force with the periodic eddy structure we would expect. An example is 
given in figure 4(a) for a / H  = 0.2, h / H  = 0.5. 

(d) Two plane parallel boundaries, radial ring distribution 
The arrangement of the radial ring distribution is illustrated in figure 3. Because of 
the radial distribution, we have axisymmetry and can use the Stokes stream function 
in contrast to the point force example. Details on the derivation can be found in the 
appendix. An example of the resulting streamlines for a/H = 0.2, h / H  = 0.5 is 
illustrated in figure 4 (b). For the cases when the singularities are close to one boundary 
the single-boundary results of (b) are obtained. When the ring distribution is located 
on the mid-plane an infinite set of pairs of symmetric eddies are obtained. 

4. Stokeslet interaction 
To explain the interaction of the stokeslets leading to the additional eddies in the 

last section we shall use a simpler case; that of two parallel lines of uniformly dis- 
tributed stokeslets (or a pair of two-dimensional stokeslets) near a plane boundary. 
Let the pair of two-dimensional stokeslets be of strength 4np situated at  (a, 1) and 
( -a, 1)  in a (y, x )  Cart,esian co-ordinate system with the plane boundary at x = 0. 
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Here we again non-dimensionalize scales with respect to h, the height of the force 
above the plane boundary. Defining a stream function as in (2.3) with y replacing x, 
we obtain the stream function for the two two-dimensional stokeslets normal to the 
plane (i.e. in the z-direction) from (2.5). Thus, we obtain 

4zy[ ( z  + 1)’ + y’ - a’] 
a)’ + (z  - 1)’ 

The streamlines of (4.1) for various values of a are illustrated in figure 5 (a-c) . As in 
the last section, we see that the existence or non-existence of an ‘internal’ eddy 
depends on the value of a in a fashion qualitatively similar to the ring distribution case. 

For the case of two parallel stokeslets with the stokeslet a t  (a,  1)  pointing in the 
positive y direction and the one a t  ( -a ,  1 )  pointing in the negative y direction, we 
obtain the stream function from (2.4) as follows, 

Streamlines of (4.2) for various values of a are illustrated in figure 5(d - f ) .  Here we 
obtain an additional ‘internal ’ eddy either next to the axis of symmetry and boundary 
or isolated adjacent to the plane boundary; the location depending on the value of a. 
We use these examples to explain the existence of these additional eddies in the ring 
distribution examples of the last section. In what follows we shall show that these 
additional ‘internal’ eddies derive from the interaction of the two stokeslets and the 
convergence of streamlines near each of them. 

(a )  Normal-oriented stokeslets 
The value of the stream function at any point can be obtained by superposing two 
stokeslet fields as in figure 1 ( b ) ,  a distance 2a apart. When the two stokeslets are far 
apart (a 1 )  the streamlines in the respective near fields are almost identical with that 
of the single stokeslet case (2.5), each producing two ‘apparently’ infinite eddies. 
Since the two ‘inner’ eddies are inclined to the axis they will superimpose, cancelling 
each other’s influence in the outer field to produce finite eddies in the inner field. Be- 
cause of symmetry we have $ = 0 on y = 0. Two symmetric closed streamlines be- 
tween the two stokeslets with a given stream function value are shown schematically 
in figure 6. As the two stokeslets move closer together these lines pass through positions 
a-f. As ~ = 0 along y = 0, the possibility for an eddy closing on the z axis (a separation 
line $ = 0) is only a t  a stagnation point (i.e. a point on the axis where u, = 0). Figure 
6 (c) shows such a point at the peak (i.e. a turning point where a$/ay = 0) of the two 
eddies and figure 6 ( e )  shows a similar point a t  the intersection of the lowest points of 
these two eddies. Any two such symmetric streamlines will be in one of these positions, 
and positions c and e cannot be obtained simultaneously (of course for two different 
stream values). We therefore see that at  most there is only one stagnation point zs 
on the z axis which moves down as the distance between the two stokeslets decreases. 
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FIGURE 6. Schematic picture of interaction of two symmetric closed stredines of a pair of 
two-dimensional stokeslets, oriented normal to a plane boundary. As the two stokeslets move 
towards each other, the closed streamlines move through positions (a)-(f). For a < 1/43, see 
(4.1), all intersecting streamlines will be in position (f), and no stagnation point exists on the line 
of symmetry. 

The 'internal eddy', if it exists, must therefore close onto the boundary z = 0. 
Expanding (4.1) for $(y, z )  near z = 0, we obtain 

a+y 1 $hz -42'" 1 + ( y -a )  2 ] a +  [ 1 +  (y+a)2]2 * 
Y-fJ 

Setting $h = 0 in (4.3), we find that the 'internal' eddy closes on the axis at 

ys = [ - (a.2+ 1 )  + 2n(a2+ l)i]4. 

(4.3) 

5 
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We find that only one such point exists for a 2 1/43 and none a t  all for a < 1/43. 
For a > 1 we obtain the following approximation to (4.4) for y,, 

ys x a-  1/8a3, (4.5) 

which is an accurate approximation as can be seen from figure 5 (b-c). 
The reason for the existence or non-existence of the ‘internal’ eddy follows from 

the behaviour of the stream function in (2.5) near the boundary z = 0. Streamlines 
are drawn towards the stokeslet (see figure 1 b) and return, circulating below the line 
z = 1. Near z = 0 the stream function (2.5) is approximately 

For x c 0, f(x) is positive with a maximum at x = - 1/43, f(0) = 0 andf(x) is anti- 
symmetric. A similar behaviour is seen for $(x, y) taken along the dashed line in figure 
1 (b). This follows because of the circulation of the streamlines. In  figure 7 (a, b) we 
show the superposition of two such curves, a distance 2a apart, for a < 1/43 and 
a > 1/43. Equation (4.3) is obtained by adding the two. In  both cases $ < 0 for 
y 2 a and $ = 0 for y = 0. However, in case (a) both curves are decreasing, and $ is 
negative for all y 2 0, whereas in case (b) both are increasing so that $ > 0 for y > 0 
(and y small) and thus there is a point 0 c ys < a such that $ = 0. Moreover from (4.6) 
we note that the turning point a$/ax = 0 near the boundary is a t  x = - 1/43. Thus 
if a < 1/43 we only have intersections as in figure 6 (f) and no stagnation point on the 
z axis. At  a = l/ 4 3  the two stagnation points zs and ys collapse onto the pointy = z = 0 
and the ‘internal ’ eddy disappears. 

( b )  Tangentially oriented stokeslet 
In  the case of a single stokeslet oriented parallel to the plane boundary no eddy exists, 
so we cannot consider the superposition of eddies when considering stokeslet inter- 
action as was the case in part (a) of this section. However, the two opposite stokeslets 
together impose a zero flux condition, thus creating a t  least one eddy (one toroidal 
eddy in the axisymmetric case, two eddies in the two-dimensional case because of 
symmetry about y = 0), the ‘ outer’ eddy. The ‘internal’ eddy, between the two stokes- 
lets, was shown in figure 5 (d- f )  either to attach to both the boundary (z  = 0) and axis 
of symmetry ( y  = 0) or to be isolated near y = a, attached only to the boundary. 
Approximating (4.2) near z = 0, we obtain 

ys = [a2+ 114. 

Approximating (4.2) near y = 0, one obtains that $ = 0 near y = 0 for 

z, = (1 -as)). (4.9) 

Thus, if 0 c a < 1 we have an eddy connecting the points (0, (1 - a8)*) and (( 1 + a8)*, 0) 
while for a > 1 there is an eddy attached to the boundary, connecting the points 
((a8- l)*, 0) and ((a2+ 1)4, 0). 

From figure 1 (a) we observe that the streamlines of (2.4) are drawn towards the 
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FIGURE 7. Interaction of two stream-function values of a pair of two-dimensional stokeslets a 
distance 2a apart, above a plane boundary. (a)-@) Normal orientation, for f ( r )  see (4.6). 
a = 0.2 < 1/43 no internal eddy, a = 1.0 > 1/43 internal eddy exists. (c)-(d) Tangential 
orientation in opposite directions (subtract g(y+a) from g(y-a)), for g(r) see (4.10). a = 1.5 
> 1.0. eddy attached to boundary only; a = 0.8 < 1.0 internal eddy attached to line of sym- 
metry and boundary. 

5-2 
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FIQWRE 7 (c, d ) .  For the caption see page 125. 

stokeslet at x = a, inside the circle x2 + z2 = 1.  Thus for each z, $(x, z )  has a positive 
local maximum on the circle above and also a local minimum for x = 0. Near z = 0, 
we have 

(4.10) 

where g(x) is positive and symmetric with a maximum at x = 1 and a minimum 
g(0) = 0 at x = 0. Consider $(x, z )  along the dashed line in figure 1 (a); we see a similar 
situation with a maximum at x = ( 1  - z2)I and a minimum at x = 0, 

22 
z + 1  

$(O, 2 )  = - - (4.1 1) 

In  figure 7 (c, d )  we show a superposition of two curves g(y + a) and g(y - a) a distance 
2a apart, for a > 1 and a < 1. Equation (4.7) is obtained by subtracting curve (b) from 
curve (a) in figure 7 (c, d). Thus where curve (a) > curve (b) we have > 0 and where 
curve (a) < curve (b) we have $ < 0. In the case a > 1, it is clear that we will obtain 
two intersections ($ = 0) close to z = 0. As z increases +(O,  z )  in (2.4) increases (see 
(4.1 1)) and so for a fixedz > Othere will be nointersectionof (a) (modifiedwith respect 
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to z) and (b)  if a is large enough. Thus, this eddy becomes smaller and smaller as the 
distance between the two stokeslets increases. For the case a < 1 (see figure 7 4  it  is 
clear that  there is only one intersection of g(y -a)  g(y+a)  for y > 0. Therefore there 
is only one stagnation point for y > 0 on the boundary z = 0. An increase in z moves 
the maxima (at x = f (1 - z2)a) closer, which is equivalent to shifting curves ( a )  and 
(b )  further apart (increasing 2a) as well as raising the minimum. Thus, at z, = ( 1  - a)& 
the adjacent maxima of (a )  and (b )  merge, both $(O, z,) and a$(O, z,)/ay are zero and 
the eddy closes on that point. 

5. Summary and discussion 
In  this paper we have investigated the kinematic and dynamic conditions creating 

one or more viscous eddies due to a single stokeslet or a line of stokeslets near bound- 
aries. The most important condition ensuring the existence of an eddy is the zero-flux 
condition, such as one obtains when looking at a stokeslet acting normal to a plane 
boundary. In this case a single (toroidal) eddy extending to infinity, both laterally 
and in the direction of the force, is obtained. Introducing additional boundaries 
which prevent the eddy from expanding, obtained for example by adding a plane 
boundary parallel to the previous one or confining the stokeslet inside an infinite 
cylinder, results in the breaking up of the single eddy into an infinite sequence of 
eddies. In  this case adjacent eddies rotate in opposite directions and the vorticity 
decays exponentially in strength away from the stokeslet. Furthermore, due to the 
exponential decays of the velocity, the Stokes flow equations are uniformly valid 
throughout the flow domain. 

Additional finite eddies appear when we study a ring of stokeslets, for example 
when modelling the action of a sessile micro-organism between a microscope slide and 
a coverslip. The existence or non-existence, the shape and location of these additional 
eddies depend on the radius of the ring relative to its height above the plane boundary. 
The same results were shown to hold when looking at a pair of two-dimensional stokes- 
lets. This simpler configuration was used to show that the additional eddies are a 
result of stokeslet interactions combined with the convergence of the streamlines of 
each stokeslet at its point of action. 

As was described in the introduction experiments on sessile micro-organisms show 
a variety of flow patterns which to date have been unexplained by protozoologists. 
Our results clearlyindicate that these flow patterns arenot due to any particular beat 
of the cilia or flagella of the micro-organism but rather an interaction of the flow field 
they create with adjacent boundaries. The shape, location and number of eddies 
generated depend only on the direction of the force produced by the micro-organism, 
its location and size relative to the boundaries, and the shape of the boundaries. 

The major part of this work was carried out at  the CSIRO Division of Mathematics 
and Statistics, Canberra. One of the authors (N.L.) would like to acknowledge the 
warm hospitality of DMS, CSIRO, where he was an official visitor in July/August 
1979. The authors also acknowledge the programming assistance of Andrew Chin. 
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Appendix. A radially uniform ring of stokeslets parallel to two plane 
boundaries 

The ring of stokeslets is located at r = a and z = h, where ( x , r )  are cylindrical 
co-ordinates (see figure 3). Let the strength of the stokeslets be fo/27ra per unit length 
in the radial direction (the total force in any direction being zero). The stream function 
is 

(A 1)  I Q) 

$ C J,(A,a) H$l)(A,r)a,(x,h) for r > a, 
4P m = l  

where A,, m = 1) 2, . . . are the roots in the first quadrant of 

and the function a, (2, h) is 
sinh2A = h 

am (2, h) = [( 1 + hk)t - l]-1(hxAm [sinh A, (x - h)  
+ A, cosh Arfi (z + h) - (1 +A:)# sinh A, (x + h)]  

+A,(zcoshA,zsinhA,h-hsinhA,xcoshA,h) 

+ sinh Amh sinh A,x[(h - x) (1 + A:)& + x + h - i]}. (A 3) 

Here J, and 
In the case r c a, interchange the arguments of J ,  and Hi1).  All linear dimensions 

in (A l),  (A 3) are non-dimensionalized with respect to H .  
The derivation of this formula is of interest as it is not straightforward as other 

cases. By equation (48 )  of Liron & Mochon (1976),  the velocity in the x direction due 
to a stokeslet at  x = h, between two plates, and pointing in the a direction (a = 1,2  
being the y and z directions respectively) is 

are the usual Bessel functions. 

where a,@, h) is given in (A 3) and with p defined by 

p2 = a2+r2-2arcos+. (A 5 )  

It follows, from (A 4), that for a force f per unit length in the radial direction, the 

and U, due to the entire ring is found by integrating (A 6) over q5 from 0 to 2n. Using 
a formula from Watson (1948))  we obtain the following integrated expression for U,, 

H~l)(A,r)J,(A,a)A,a,(x,h) (A 7 )  

Iff = fo/2nr, and since U' = ( l / r )  a$/&, we obtain 

@ = f g r I m  4~ ( m = l  2 Hil)(Amr)Jl(A,a)a,,,(x,h)) +f,(z), a < r. (A 8) 

Since, for r + 03, $ = 0, we havef,(x) = 0.  
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